Home
Class 12
MATHS
If e^x+e^(f(x))=e , then the range of f(...

If `e^x+e^(f(x))=e` , then the range of `f(x)` is `(-oo,1]` (b) `(-oo,1)` (1, `oo)` (d) `[1,oo)`

Promotional Banner

Similar Questions

Explore conceptually related problems

y= f(x) is a polynomial function passing through point (0, 1) and which increases in the intervals (1, 2) and (3, oo) and decreases in the intervals (-oo,1) and (2, 3). If f(1)= -8, then the range of f(x) is (a) [3,oo) (b) [-8,oo) (c) [-7,oo) (d) (-oo,6]

The domain of f(x)=log|log x|is(0,oo)(b)(1,oo)(c)(0,1)uu(1,oo)(d)(-oo,1)

f(x)=|x log_e x| monotonically decreases in (a) (0,1/e) (b) (1/e ,1) (c) (1,oo) (d) (1/e ,oo)

The range of the function f(x)=|x-1| is A. (-oo,0) B. [0,oo) C. (0,oo) D. R

The range of the function f(x)=|x-1| is A. (-oo,0) B. [0,oo) C. (0,oo) D. R

The interval in which the function f given by f(x) = x^2 e^(-x) is strictly increasing is (a) ( -oo , oo ) (b) ( -oo , 0 ) (c) ( 2 , oo ) (d) ( 0 , 2 )

If f(x)={x^3,if x^2 =1 then f(x) is differentiable at (a) (-oo,oo)-{1} (b) (-oo,oo)-{1,-1} (c) (-oo,oo)-{1,-1,0} (d) (-oo,oo)-{-1}

the interval in which the function f given by f(x) = x^2 e^(-x) is strictly increasing, is (a) ( -(oo) , (oo) ) (b) ( -(oo) , 0 ) (c) ( 2 , (oo) ) (d) ( 0 , 2 )

the interval in which the function f given by f(x) = x^2 e^(-x) is strictly increasing, is (a) ( -(oo) , (oo) ) (b) ( -(oo) , 0 ) (c) ( 2 , (oo) ) (d) ( 0 , 2 )

the interval in which the function f given by f(x) = x^2 e^(-x) is strictly increasing, is (a) ( -(oo) , (oo) ) (b) ( -(oo) , 0 ) (c) ( 2 , (oo) ) (d) ( 0 , 2 )