Home
Class 12
MATHS
If f(x)=cos[pi^(2)]x+cos[-pi^(2)]x, wher...

If `f(x)=cos[pi^(2)]x+cos[-pi^(2)]x`, where `[x]` stands for the greatest integer function, then

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=cos[(pi)/(x)]cos((pi)/(2)(x-1)); where [x] is the greatest integer function of x, then f(x) is continuous at :

If f(x)=cos[(x^(2))/(2)]x+sin[-(x^(2))/(2)]x where [.] denotes the greatest integer function, thenwhich of the following is not correct

If f(x)=cos[(1)/(2)pi^(2)]x+sin[(1)/(2)pi^(2)]x,[x] denoting the greatest integer function,then-

If f(x)= cos [(pi^(2))/(2)] x + sin[(-pi^(2))/(2)]x,[x] denoting the greatest integer function,then

If f(x)=cos[pi]x+cos[pi x], where [y] is the greatest integer function of y then f((pi)/(2)) is equal to

f(x)=2^(cos^(4)pi x+x-[x]+cos^(2)pi x), where [.] denotes the greatest integer function.

Range of the function e^(sin(x-[x])pi) where [*] stands for the greatest integer function is

If f(x)=cos(x^(2)-4[x]) for 0ltxlt1 where [x] denotes the greatest integer function then f^(1)((sqrt(pi))/(2)) is equal to

Statement-1: The period of the function f(x)=cos[2pi]^(2)x+cos[-2pi^(2)]x+[x] is pi, [x] being greatest integer function and [x] is a fractional part of x, is pi . Statement-2: The cosine function is periodic with period 2pi