Home
Class 11
MATHS
If f(x)=1-3sqrt(e)x-ex^(3) then find lea...

If `f(x)=1-3sqrt(e)x-ex^(3)` then find least integral value of `x` satisfying the inequality `f((e^(1/x))/(x-2))ltf(((e^((1)/(10))))/(8)sgn(1+sgn(|e^(x)-1|)))`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=e^(x)(x^(2)+1) then find f'(x)

Let f(x)=1-x-4x^(3),f:R rarr R then find the number of integrality satisfying the inequality 4f(x)^(3)+f(1-2x)+f(x)<1

Least integral value of for which inequality sin^(-1)(sin((2e^(x)+3)/(e^(x)+1)))>pi-(5)/(2) holds is

If f(x)={(e^(x+1)-e^(x),x =1)

Absolute value of the difference between the greatest and smallest integral value of x ,satisfying the inequality ((log_(10)x-1))/((e^(x)-3))<=0 ,is equal to

Integrate the functions (e^(x))/((1+e^(x))(2+e^(x)))

Let f(x)=e^(x)+2x+1 then find the value of int_(2)^(e+3)f^(-1)(x)dx

The value of the integral int_(0)^(log5)(e^(x)sqrt(e^(x)-1))/(e^(x)+3)dx

Range of the f(x)=(e^(x)-1)/(e^(x)+1)