Home
Class 12
MATHS
If |z-2i|lesqrt(2), where i=sqrt(-1), th...

If `|z-2i|lesqrt(2),` where `i=sqrt(-1),` then the maximum value of `|3-i(z-1)|,` is

Promotional Banner

Similar Questions

Explore conceptually related problems

if |z-2i| le sqrt2 , then the maximum value of |3+i(z-1)| is :

If z is any complex number satisfying abs(z-3-2i) le 2 , where i=sqrt(-1) , then the minimum value of abs(2z-6+5i) , is

The minimum value of |Z-1+2i|+|4i-3-z| is

If |Z|=3 the maximum value of |Z-1+sqrt(3)i | is

If |z-2-3i|+|z+2-6i|=4 where i=sqrt(-1) then find the locus of P(z)

If z=i^(i) where i=sqrt(-)1 then |z| is equal to

If z=x+iy=((1)/(sqrt2)-(i)/(sqrt2))^(-25), where i=sqrt(-1), then what is the fundamental amplitude of (z-sqrt2)/(z-sqrt2) ?