Home
Class 11
MATHS
Show that Lt(x rarr2^(-))(|x-2|)/(x-2)=-...

Show that `Lt_(x rarr2^(-))(|x-2|)/(x-2)=-1`

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate (Lt)_(x rarr2^(-))(|x-2|)/(x-2)

Show that lim_(x rarr2)((|x-2|)/(x-2)) does not exist

Show that lim_(x rarr2)[(1)/(x-2)-(1)/(x^(2)-3x+2)]=

Lt_(x rarr0)(tan^(-1)x)/(x)

Show that lim_(x rarr0+)((2|x|)/(x)+x+1)=3

lim_(x rarr2)(x-2)/(x+1)=

Lt(x rarr0)((|x|)/(x)+x+2)=

If f(x)=det[[sin x,cos x,tan xx^(3),x^(2),x2x,1,1]] then show that lim_(x rarr0)(f(x))/(x^(2))=1

Show that : lim_(x rarr1)(2x-1)=1

Lt_(x rarr oo)(1)/((x-3)^(2))