Home
Class 12
MATHS
If bar(a)=bar(i)-2bar(j)-bar(k), bar(b)=...

If `bar(a)=bar(i)-2bar(j)-bar(k)`, `bar(b)=-2bar(j)+bar(k)` are two vectors and `bar(c)` is a vector such that `bar(c)=bar(a) times bar(b)` then `|bar(a)|:|bar(b)|:|bar(c)|`=

Promotional Banner

Similar Questions

Explore conceptually related problems

If bar(a)=3bar(i)-5bar(j),bar(b)=6bar(i)+3bar(j) are two vectors and bar(c) is vector such that bar(c)=bar(a)timesbar(b) then |bar(a)|:|bar(b)|:|bar(c)|=

Let bar(a)=-bar(i)-bar(k),bar(b)=-bar(i)+bar(j) and bar(c)=bar(i)+2bar(j)+3bar(k) be three given vectors. If bar(r) is a vector such that bar(r) times bar(b)=bar(c) times bar(b) and bar(r).bar(a)=0 then bar(r).bar(b)=

Let bar(a)=-bar(i)-bar(k) , bar(b)=-bar(i)+bar(j) and bar(c)=bar(i)+2bar(j)+3bar(k) be three given vectors. If bar(r) is a vector such that bar(r)timesbar(b)=bar(c)timesbar(b) and bar(r)*bar(a)=0 , than bar(r)*bar(b) =

If bar(a)=bar(i)+bar(j)+bar(k) , bar(b)=bar(i)+2bar(j)+3bar(k) then a unit vector perpendicular to both vectors (bar(a)+bar(b)) and (bar(a)-bar(b)) is

If bar(a)=bar(i)+2bar(j)+bar(k),bar(b)=2bar(j)+bar(k)-bar(i), then component of bar(a) perpendicular to bar(b) is

Let bar(a)=2bar(i)+bar(j)+bar(k),bar(b)=bar(i)+2bar(j)-bar(k) and a unit vector bar(c) be coplanar.If bar(c) is perpendicular to bar(a), then bar(c) is

If [bar(a)+2bar(b)2bar(b)+bar(c)5bar(c)+bar(a)]=k[bar(a)bar(b)bar(c)]

If bar(a)=2bar(i)-3bar(j)+5bar(k),bar(b)=-bar(i)+4bar(j)+2bar(k) then find bar(a)timesbar(b) and unit vector perpendicular to both bar(a) and bar(b) .

bar(a)=2bar(i)+bar(j)-2bar(k) and bar(b)=bar(i)+bar(j) if bar(c) is a vector such that bar(a)*bar(c)=|bar(c)|,|bar(c)-bar(a)|=2sqrt(2) and and the angle between bar(a)xxbar(b) and bar(c) is 30^(@), then |(bar(a)xxbar(b))xxbar(c)|=

bar(b)=bar(i)-2bar(j)-3bar(k),bar(b)=2bar(i)+bar(j)-bar(k),bar(c)=bar(i)+ 3bar(j)-2bar(k) then bar(a).(bar(b)xxbar(c))