Home
Class 12
MATHS
If a=2^(b),b=prod(c=2)^(15)log(c)(c+1) ,...

If `a=2^(b),b=prod_(c=2)^(15)log_(c)(c+1)` ,then the value of `log_(2)(log_(16) a)` is :

Promotional Banner

Similar Questions

Explore conceptually related problems

If (2)/(b)=(1)/(a)+(1)/(c) , then the value of (log(a+c)+log(a-2b+c))/(log(a-c)) is

a^(log_(b)c)=c^(log_(b)a)

Let a=(log_(27)8)/(log_(3)2),b=((1)/(2^(log_(2)5)))((1)/(5^(log_(5)(01)))) and c=(log_(4)27)/(log_(4)3) then the value of (a+b+c), is and c=(log_(4)27)/(log_(4)3)

If a=b^(2)=c^(3)=d^(4), then the value of log_(a)(abcd) would be a.(log_(a)1+(log)_(a)2+(log)_(a)3+(log)_(a)4b(log)_(a)24c.1+(1)/(2)+(1)/(3)+(1)/(4)d1+(1)/(2!)+(1)/(3!)+(1)/(4!)

If log_(a)b=1/2,log_(b)c=1/3" and "log_(c)a=(K)/(5) , then the value of K is

Show that log_(b)a log_(c)b log_(a)c=1