Home
Class 10
MATHS
एक चतुर्भुज ABCD में, angleB = 90^(@) ह...

एक चतुर्भुज ABCD में, `angleB = 90^(@)` है यदि `AD^(2) = AB^(2) + BC^(2) + CD^(2)` हो तो सिद्ध कीजिए कि `angle ACD = 90^(@)`

Promotional Banner

Similar Questions

Explore conceptually related problems

In the figure angle B = 90^(@) , AD^(2) = AB^(2) + BC^(2) + CD^(2) . Prove angle ACD = 90^(@) .

In a quadrilateral ABCD, angleB=90^(@) and AD^(2)= AB^(2) + BC^(2)+CD^(2) prove that angleACD= 90^(@) .

In a quadrilateral ABCD, angleB=90^(@) and AD^(2)= AB^(2) + BC^(2)+CD^(2) prove that angleACD= 90^(@) .

In a quadrilateral ABCD, angleB = 90^0 , AD^2 = AB^2 + BC^2 + CD^2 . Prove that angle ACD = 90 ^0 .

In a quadrilateral ABCD, /_B= 90^(@)" and "AD^(2)= AB^(2)+BC^(2)+CD^(2) . Prove that /_ACD= 90^(@) .

In a quadrilateral ABCD, lfloorB=90^(@) . If AD^(2)=AB^(2)+BC^(2)+CD^(2) , prove that lfloorACD=90^(@) .

In Delta ACB, angle C = 90^(@) and CD bot AB Prove that (BC^(2))/(AC^(2)) = (BD)/(AD) .

In Delta ACB, angle C = 90^(@) and CD bot AB Prove that (BC^(2))/(AC^(2)) = (BD)/(AD) .

एक समकोण DeltaABC , मे यदि angle B=90^(@) , AB = 6 , BC=8, तब AC=?.

In a quadrilateral ABCD angle B = angle D = 90 ^(@) Prove that : 2AC^(2) - BC^(2) = AB^(2) + AD^(2) +DC^(2)