Home
Class 12
MATHS
A straight line passing through the poin...

A straight line passing through the point`(2,2)` and the axes enclose an area `lamda`. The intercepts on the axes made by the line are given by the two roots of:
(A)   `x^2-2|lamda|x+|lamda|=0`   (B)   `x^2+|lamda|x+2|lamda|=0`
(C)   `x^2-|lamda|x+|2lamda|=0`   (D)   None of these

Promotional Banner

Similar Questions

Explore conceptually related problems

If a^(1/2)+b^(1/2)-c^(1/2)=0 , then the value of (a+b-c)^2 is: (A)    2ab    (B)    2bc    (C)    4ab    (D)    4ac

The co-ordinates of two fixed points A and B of a triangle ABC are (a,0) and (-a,0) respectively. If variable point C moves such that cot A+ cot B=lamda , (where lamda is a constant) then the locus of point C is:- (1)    y lamda =2a     (2)    y =lamda a     (3)    y a=2lamda     (4)     None of these.

If int (1+xtanx)^(-2) dx=1/(x+f(x))+c; then value of f(x) is (1)   xtanx    (2)   cotx    (3)   tanx    (4)   tan^2x

The distance of the point (2,3) from the line x-2y+5=0 measured in a direction parallel to the line x -3y=0 is: (A)   2sqrt(10)     (B)   sqrt(10)     (C)   2sqrt(5)     (D)   None of these

If m and x are two real numbers where m in I , then e^(2micot^(-1)x)((x*i+1)/(x*i-1))^m (A)    cos x+i sin x    (B)    m/2    (C)    1     (D)    (m+1)/2

If m and x are two real numbers where m in I , then e^(2micot^(-1)x)((x*i+1)/(x*i-1))^m (A)    cos x+i sin x    (B)    m/2    (C)    1     (D)    (m+1)/2

If m and x are two real numbers where m in I , then e^(2micot^(-1)x)((x*i+1)/(x*i-1))^m (A)    cos x+i sin x    (B)    m/2    (C)    1     (D)    (m+1)/2

If alpha , beta gamma are the roots of the equation x^3+px^2+qx+r=0 , then (1-alpha^2)(1-beta^2)(1-gamma^2) is equal to (a)    (1+q)^2-(p-r)^2    (b)    (1+q)^2+(p+r)^2 (c)    (1-q)^2+(p-r)^2    (d)   none of these

Sum of the series 1+2^2x+3^2x^2+4^2x^3+.....to oo , |x| (A)    (1+x)/(1-x)^3    (B)    (1-x)/(1+x)^3     (C)    (2+x)/(1-x)^3    (D)    (1-x)/(1+x)^2

If a+c+e=0 and b+d=0, then ax^4+bx^3+cx^2+dx+e is exactly divisible by (1)   x+1       (2)  x-1 (3)   Both (1) & (2)       (4)   None of these