Home
Class 12
MATHS
The number of real roots of the equation...

The number of real roots of the equation
`1+a_(1)x+a_(2)x^(2)+………..a_(n)x^(n)=0`, where `|x| lt (1)/(3)` and `|a_(n)| lt 2`, is

Promotional Banner

Similar Questions

Explore conceptually related problems

The number of real roots of : 1 + a_(1)X + a_(2) x^(2) .... + a_(n) x^(n) = 0 , where |x| lt (1)/(3) and | a_(n) | lt 2 , is :

Let (1 + x)^(n) = 1 + a_(1)x + a_(2)x^(2) + ... + a_(n)x^(n) . If a_(1),a_(2) and a_(3) are in A.P., then the value of n is

Let (1+x)^(n) = 1+a_(1)x + a_(2)x^(2) + ……+ a_(n)x^(n) . If a_(1), a_(2) and a_(3) are in AP, then the value of n is

Lt_(x to 0)((a_(1)^(x)+a_(2)^(x)+...+a_(n)^(x))/(n))^(1//x)=

Suppose p(x)=a_(0)+a_(1)x+a_(2)x^(2)+...+a_(n)x^(n). If |p(x)| =0, prove that |a_(1)+2a_(2)+...+na_(n)|<=1

If a_(1),a_(2),a_(3),a_(4),,……, a_(n-1),a_(n) " are distinct non-zero real numbers such that " (a_(1)^(2) + a_(2)^(2) + a_(3)^(2) + …..+ a_(n-1)^(2))x^2 + 2 (a_(1)a_(2) + a_(2)a_(3) + a_(3)a_(4) + ……+ a_(n-1) a_(n))x + (a_(2)^(2) +a_(3)^(2) + a_(4)^(2) +......+ a_(n)^(2)) le 0 " then " a_(1), a_(2), a_(3) ,....., a_(n-1), a_(n) are in

If a_(1),a_(2),a_(3),a_(4),,……, a_(n-1),a_(n) " are distinct non-zero real numbers such that " (a_(1)^(2) + a_(2)^(2) + a_(3)^(2) + …..+ a_(n-1)^(2))x^2 + 2 (a_(1)a_(2) + a_(2)a_(3) + a_(3)a_(4) + ……+ a_(n-1) a_(n))x + (a_(2)^(2) +a_(3)^(2) + a_(4)^(2) +......+ a_(n)^(2)) le 0 " then " a_(1), a_(2), a_(3) ,....., a_(n-1), a_(n) are in

If alpha and beta are roots of the equation x^(2)-3x+1=0 and a_(n)=alpha^(n)+beta^(n)-1 then find the value of (a_(5)-a_(1))/(a_(3)-a_(1))

If alpha and beta are roots of the equation x^(2)-3x+1=0 and a_(n)=alpha^(n)+beta^(n)-1 then find the value of (a_(5)-a_(1))/(a_(3)-a_(1))