Home
Class 12
MATHS
The value of int((tan^(-1)(sinx+1))cosx)...

The value of `int((tan^(-1)(sinx+1))cosx)/((3+2sinx-cos^(2)x))dx` is (where c is the constant of integration)

Promotional Banner

Similar Questions

Explore conceptually related problems

The integral I=int(2sinx)/((3+sin2x))dx simplifies to (where, C is the constant of integration)

The integral I=int((1)/(x.secx)-ln(x^(sinx)))dx simplifies to (where, c is the constant of integration)

The integral I=int((1)/(x.secx)-ln(x^(sinx))dx simplifies to (where, c is the constant of integration)

The integral I=int(e^((e^sinx+sinx)))cos x dx simpllifies to (where, c is the constant of integration)

The integral I=int(e^((e^sinx+sinx)))cos x dx simpllifies to (where, c is the constant of integration)

int e^(x)[(1+sinx cosx)/(cos^(2)x)]dx

If inte^(sinx)[(xcos^3x-sinx)/(cos^2x)]dx=e^(sinx)*f(x)+c , where c is constant of integration, then f(x)=

If inte^(sinx)((xcos^(3)x-sinx)/(cos^(2)x))dx=e^(sinx)f(x)+c , where c is constant of integration, then f(x)=

If inte^(sinx)((xcos^(3)x-sinx)/(cos^(2)x))dx=e^(sinx)f(x)+c , where c is constant of integration, then f(x)=

The integral I=inte^(x)((1+sinx)/(1+cosx))dx=e^(x)f(x)+C (where, C is the constant of integration). Then, the range of y=f(x) (for all x in the domain of f(x) ) is