Home
Class 14
MATHS
" If "y=(log x)/(x)," prove that "(d^(2)...

" If "y=(log x)/(x)," prove that "(d^(2)y)/(dx^(2))=(2log x-3)/(x^(3))

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=(log x)/(x), show that (d^(2)y)/(dx^(2))=(2log x-3)/(x^(3))

If y=(log x)/(x), show that(d^(2)y)/(dx^(2))=(2log x-3)/(x^(3))

If y=x^(3)log((1)/(x)) , prove that (d^(2)y)/(dx^(2))-(2)/(x)(dy)/(dx)+3x=0 .

If y=log(sin x), prove that (d^(3))/(dx^(3))=2cos x csc^(3)x

If y= x log ((x)/(a + bx)) prove that (d^(2)y)/(dx^(2)) = (1)/(x) ((a)/(a+ bx))^(2)

If y=log(sin x), prove that (d^(3)y)/(dx^(3))=2cos x cos ec^(3)x

If y=log x/x show that,[(d^(2)y)/(dx^(2))]_(x=1)=-3

"If "x^(y)=e^(x-y)," prove that "(dy)/(dx)=(log x)/((1+log x)^(2)).

"If "x^(y)=e^(x-y)," prove that "(dy)/(dx)=(log x)/((1+log x)^(2)).

If y=sin(log x), prove that x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx)+y=0