Home
Class 11
MATHS
lim(x rarr a)(x^(n)-a^(n))/(x-a)=na^((n-...

lim_(x rarr a)(x^(n)-a^(n))/(x-a)=na^((n-1))

Promotional Banner

Similar Questions

Explore conceptually related problems

For any positive integer lim_(x rarr a)(x^(h)-a^(n))/(x-a)=na^(n-1)

For any positive integer n, lim_(xtoa)(x^(n)-a^(n))/(x-a)=na^(n-1)

Evaluate: lim_(x rarr a) [(x^(n)-a^(n))/(x^(m)-a^(m))] .

Starting from underset(xrarra)"lim"(x^(n)-a^(n))/(x-a)=na^(n-1)" deduce that ," underset(xrarr0)"lim"((1+x)^(n)-1)/(x)=n.

lim_(x rarr oo) (x^(n)+a^(n))/(x^(n)-a^(n))= ________.

lim_(x rarr2)((1+x)^(n)-3^(n))/(x-2)=n*3^(n-1)

lim_(x rarr a)(x^(m)-a^(m))/(x^(n)-a^(n))=((m)/(n))a^(m-n) if m>n

(lim_(x rarr a)(x^(n)-a^(n))/(x-a) is equal to na^(n)b*na^(n-1) c.nad.1

lim_(x rarr0)((x+1)^(n)-1)/(x)

lim_(x rarr0)((1-x)^(n)-1)/(x)