Home
Class 12
MATHS
" (ii) "(1)/(2a+b+2x)=(1)/(2a)+(1)/(b)+(...

" (ii) "(1)/(2a+b+2x)=(1)/(2a)+(1)/(b)+(1)/(2x)

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve for: (1)/(2a+b+2x)=(1)/(2a)+(1)/(b)+(1)/(2x)

Solve for: 1/(2a+b+2x)=1/(2a)+1/b+1/(2x)

The expression (1)/(1+(x)/(1-(x)/(x+2)))div ((1)/(1-x)+(1)/(1+x))/((1)/(1-x)-(1)/(1+x)) (a) (2x)/(x^(2)+2x+2) (b) (2x)/(x^(2)-1) (c) 1 (d) x^(2)-1

If sin^(-1)((2a)/(1+a^2))+sin^(-1)((2b)/(1+b^2))=2tan^(-1)x , then x is equal to [a , b , in (0,1)] (a)(a-b)/(1+a b) (b) b/(1+a b) (c) b/(1+a b) (d) (a+b)/(1-a b)

If f(x)=det[[(1+x)^(a),(1+2x)^(b),11,(1+x)^(a),(1+2x)^(b)(1+2x)^(b),1,(1+x)^(a)(1+2x)^(b),1,(1+x)^(a) term and coefficient of x]]

If A=(2x+1)/(2x-1), B=(2x-1)/(2x+1) find (1)/(A-B)-(2B)/(A^(2)-B^(2))

If (1)/((1+2x)(1-x^(2)))=(A)/(1+2x)+(B)/(1+x)+(C)/(1-x) then assending order of A, B, C.

If (1)/((1+2x)(1-x^(2)))=(A)/(1+2x)+(B)/(1+x)+(C)/(1-x) then assending order of A, B, C.