Home
Class 12
MATHS
IF A=[{:(a+ib,c+id),(-c+id,a-ib):}] a^...

IF `A=[{:(a+ib,c+id),(-c+id,a-ib):}]`
`a^2+b^2+c^2+d^2=1`, then find the inverse of A.

Promotional Banner

Similar Questions

Explore conceptually related problems

If A = [(a+ib,c+id),(-c+id,a-ib)], a^(2)+b^(2)+c^(2)+d^(2) =1 , then find inverse of A.

If A=[(a+ib,c+id),(-c+id,a-ib)] and a^(2)+b^(2)+c^(2)+d^(2)=1 , then A^(-1) is equal to

If A=[(a+ib,c+id),(-c+id,a-ib)] and a^(2)+b^(2)+c^(2)+d^(2)=1 , then A^(-1) is equal to

If A=[(a+ib,c+id),(-c+id,a-ib)] and a^(2)+b^(2)+c^(2)+d^(2)=1 , then A^(-1) is equal to

Evaluate: |{:(" "a+ib,c+id),(-c+id,a-ib):}|

Evaluate det [(a+ib, c +id),(-c+id, a-ib)]

Evaluate: |(a+ib,c+id),(-c+id,a-id)|

Find the adjoint and inverse of each of the following matrices : A = [(a+ib, c +id),(-c + id,a - ib)] where a^(2) + b^(2) + c^(2) + d^(2) = 1

Evaluate det[[a+ib,c+id-c+id,a-ib]]

If a + ib = c + id , then