Home
Class 12
MATHS
" If "y=e^(ax)," show that "x(dy)/(dx)=y...

" If "y=e^(ax)," show that "x(dy)/(dx)=y log y

Promotional Banner

Similar Questions

Explore conceptually related problems

"If "y=e^(x+y)" ,show that "(dy)/(dx)=(y)/(1-y)

If x^(y)=e^(x-y), show that (dy)/(dx)=(log x)/({log(xe)}^(2))

If x^y = e^(x + y) , show that (dy)/(dx) = (log x - 2)/((1 - log x)^2)

If x^y=e^(x-y), show that (dy)/(dx)=(logx)/({log(x e)}^2)

If y=e^(log x) , show that dy/dx=1

"If "x^(y)=e^(x-y)," prove that "(dy)/(dx)=(log x)/((1+log x)^(2)).

"If "x^(y)=e^(x-y)," prove that "(dy)/(dx)=(log x)/((1+log x)^(2)).

If x^(y)=e^(x-y), then show that (dy)/(dx)=(log x)/((1+log x)^(2))

If x^(y) y^(x)=5 , then show that (dy)/(dx)= -(log y + (y)/(x))/(log x + (x)/(y))