Home
Class 12
MATHS
[" 31.Suppose for every integer "n],[int...

[" 31.Suppose for every integer "n],[int_(n)^(n+1)f(x)dx=n^(2)" the value of "j_(-2)^(-4)f(x)dx" is "],[[" (a) "16," (b) "14],[" (c) "19," (d) None of these "]]

Promotional Banner

Similar Questions

Explore conceptually related problems

Suppose for every integer n, .int_(n)^(n+1) f(x)dx = n^(2) . The value of int_(-2)^(4) f(x)dx is :

Suppose for every integer n, .int_(n)^(n+1) f(x)dx = n^(2) . The value of int_(-2)^(4) f(x)dx is :

suppose for every integer n, int_n^(n+1)f(x)dx=n^2 then the value of int_(-2)^4 f(x)dx is

For every integer n, int_(n)^(n+1)f(x)dx=n^(2) , then the value of int_(0)^(5)f(x)dx=

For every integer n, int_(n)^(n+1)f(x)dx=n^(2) , then the value of int_(0)^(5)f(x)dx=

If for every ineger n , int_(n)^(n+1) f(x) dx=n^(2) then the value of int_(-2)^(4) f(x)dx=

int_(n)^(n+1)f(x)dx=n^(2)+n then int_(-1)^(1)f(x)dx=

The value of int[f(x)]^(n)f'(x)dx=

Suppose for every integer n, . underset(n)overset(n+1)intf(x)dx = n^(2) . The value of underset(-2)overset(4)intf(x)dx is :