Home
Class 12
MATHS
" 6.Prove that: "int(0)^( pi)(x sin x)/(...

" 6.Prove that: "int_(0)^( pi)(x sin x)/(1+cos^(2)x)dx=(pi^(2))/(4)

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^( pi)(sin x)/(1+cos^(2)x)dx =

Prove that int_(0)^(pi)(xsin^(3)x)/(1+cos^(2)x)dx=pi/2(pi-2)

int_(0)^( pi/2)(sin x)/(1+cos x)dx

Prove that: int_(0)^( pi/2)(sin x)/(sin x-cos x)dx=(pi)/(4)

Prove that : int_(0)^(pi) (x sin x)/(1+sinx) dx=pi((pi)/(2)-1)

Prove that: int_(0)^(2 pi)(x sin^(2n)x)/(sin^(2n)+cos^(2n)x)dx=pi^(2)

Prove that : int_(0)^(pi) sin^(2m) x. cos^(2m+1) x dx=0

Prove that :int_(0)^(pi) (x)/(1 +sin^(2) x) dx =(pi^(2))/(2sqrt(2))

Prove that : int_(0)^(pi) x cos^(2) x dx =(pi^(2))/(4)

Prove that : int_(0)^(pi) x cos^(2) x dx =(pi^(2))/(4)