Home
Class 12
MATHS
int[(1)/((log(e)x))-(1)/((log(e)x)^(2))]...

int[(1)/((log_(e)x))-(1)/((log_(e)x)^(2))]dx

Promotional Banner

Similar Questions

Explore conceptually related problems

int (dx)/(x(1+log_(e)x)(3+log_(e)x))

int (dx)/(x(1+log_(e)x)(3+log_(e)x))

if x^(y)=e^(x-y) then prove that (dy)/(dx)=(log_(e)x)/((1+log_(e)x)^(2))

I=int(log_(e)(log_(e)x))/(x(log_(e)x))dx

int((1+(log)_(e)x)^(2))/(1+(log)_(e)x^(x+1)+((log)_(e)x^(sqrt(x)))^(2))dx=

int(e^(log_(e)x))/(x)dx

int(e^(log_(e)x))/(x)dx

int(e^(log_(e)x))/(x)dx

int_(0)^(16)(log_(e )x^(2))/(log_(e )x^(2)+log_(e )(x^(2)-44x+484))dx is equal to