Home
Class 12
MATHS
If logy=sin^-1x, show that, (1-x^2)(d^2y...

If `logy=sin^-1x`, show that, `(1-x^2)(d^2y)/(dx^2)=xdy/dx+y`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=sin(2sin^-1x) show that (1-x^2)(d^2y)/(dx^2)= xdy/dx-4y

If y=sin^(-1)x , show that (1-x^2)(d^2y)/(dx^2)-x(dy)/(dx)=0 .

If y=sin^-1x ,then show that (1-x^2)(d^2y)/dx^2-xdy/dx=0

If y = sin^-1x , then show that (1-x^2)(d^2y)/(dx^2)- x dy/dx = 0

If y=sin^(-1)x , show that (1-x^(2))(d^(2)y)/(dx^(2))-xdy/dx=0 .

If y=(sin^-1x)^2 , then show that (1-x^2)(d^2y)/(dx^2)-xdy/dx=2

If y=sin^(-1)x , show that (1-x^2)\ (d^2y)/(dx^2)-x(dy)/(dx)=0 .

If y=sin (2sin^-1x) , Prove that, (1-x^2)(d^2y)/(dx^2)=xdy/dx-4y .

Q.if log y=sin^(-1)x, show that,(1-x^(2))((d^(2)y)/(dx^(2)))=x((dy)/(dx))+y