Home
Class 10
MATHS
Write the acute angle theta satisfyin...

Write the acute angle `theta` satisfying `sqrt(3)sintheta=costheta` .

Promotional Banner

Similar Questions

Explore conceptually related problems

Write the acute angle theta satisfying sqrt(3)sin theta=cos theta

If theta a positive acute angle then the value of theta satisfies the equation sqrt(3) sin theta -cos theta=0 is

Find the acute angle theta satisfying the equation 2sin^(2)theta-2sqrt2sintheta+1=0.

Find the acute angle theta such that 2cos^2theta=3sintheta .

If (sintheta+costheta)/(sintheta-costheta)=3 and theta is an acute angle, then the value of (3sintheta+4costheta)/(8costheta-3sintheta) is

If (1+tan^(2)theta)=(625)/(49)andtheta is acute , then what is the value of (sqrt(sintheta+costheta)) ?

Prove the following : (All angles are acute angles.) (sintheta+costheta)/(sintheta-costheta)+(sintheta-costheta)/(sintheta+costheta)=2/(sin^(2)theta-cos^(2)theta)

Find an acute angle theta , when (costheta-sintheta)/(costheta+sintheta)=(1-sqrt(3))/(1+sqrt(3))

For any acute angle theta; Prove (i) 'tan theta = sintheta/costheta (ii) cot theta =cos theta/sintheta

If the angle alpha is acut, then the acute angle between the pair of staight lines x^2(costheta-sintheta)+2xycostheta+y^2(cos theta+sintheta)=0 is