Home
Class 12
MATHS
Let A and B are two non - singular matri...

Let A and B are two non - singular matrices such that `AB=BA^(2),B^(4)=I and A^(k)=I`, then k can be equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

Suppose A and B be two ono-singular matrices such that AB= BA^(m), B^(n) = I and A^(p) = I , where I is an identity matrix. If m = 2 and n = 5 then p equals to

Suppose A and B be two ono-singular matrices such that AB= BA^(m), B^(n) = I and A^(p) = I , where I is an identity matrix. If m = 2 and n = 5 then p equals to

Suppose A and B be two ono-singular matrices such that AB= BA^(m), B^(n) = I and A^(p) = I , where I is an identity matrix. If m = 2 and n = 5 then p equals to

Suppose A and B be two ono-singular matrices such that AB= BA^(m), B^(n) = I and A^(p) = I , where I is an identity matrix. If m = 2 and n = 5 then p equals to

Suppose A and B be two ono-singular matrices such that AB= BA^(m), B^(n) = I and A^(p) = I , where I is an identity matrix. The relation between m, n and p, is

Suppose A and B be two ono-singular matrices such that AB= BA^(m), B^(n) = I and A^(p) = I , where I is an identity matrix. Which of the following orderd triplet (m, n, p) is false?

Suppose A and B be two ono-singular matrices such that AB= BA^(m), B^(n) = I and A^(p) = I , where I is an identity matrix. Which of the following orderd triplet (m, n, p) is false?

Suppose A and B be two ono-singular matrices such that AB= BA^(m), B^(n) = I and A^(p) = I , where I is an identity matrix. The relation between m, n and p, is

Suppose A and B be two ono-singular matrices such that AB= BA^(m), B^(n) = I and A^(p) = I , where I is an identity matrix. Which of the following orderd triplet (m, n, p) is false?

Suppose A and B be two ono-singular matrices such that AB= BA^(m), B^(n) = I and A^(p) = I , where I is an identity matrix. Which of the following orderd triplet (m, n, p) is false?