Home
Class 12
MATHS
If xy=tan^(-1)xy+cot^(-1)xy " then "y(1)...

If `xy=tan^(-1)xy+cot^(-1)xy " then "y_(1)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If xy = tan^(-1) (xy) + cot^(-1) (xy), " then" (dy)/(dx) is equal to

If xy=sin^(-1)(xy)+cos^(-1)(xy)," then "(dy)/(dx)=

If tan ^(-1) x + tan ^(-1) y + tan ^(-1) z = (pi)/(2), then xy + yz+zx is equal to

Prove that : tan^(-1) x+cot^(-1) y = tan^(-1) ((xy+1)/(y-x))

Prove that : tan^(-1) x+cot^(-1) y = tan^(-1) ((xy+1)/(y-x))

If cot^(-1)x + cot^(-1)y + cot^(-1)z = pi , prove that xy + yz + zx = 1 .

If tan^(-1)x+tan^(-1)y+tan^(-1)z=pi , then 1/(xy)+1/(yz)+1/(zx)=

If tan^(-1)x+tan^(-1)y+tan^(-1)z=pi , then 1/(xy)+1/(yz)+1/(zx)=