Home
Class 12
MATHS
e^(ax).sin^-1bx...

`e^(ax).sin^-1bx`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find derivative of y=e^(ax)sin bx

find y_(n) where y=e^(ax)sin bx

Verify that the function y=C_(1)e^(x)cos bx+C_(2)e^(ax)sin bx,C_(1),C_(2) are arbitrary constants is a solution of the differential equation: (d^(2)y)/(dx)-2a(dy)/(dx)+(a^(2)+b^(2))y=0

Verify that the function y=c_(1)e^(ax)cos(bx)+c_(2)e^(ax)sin(bx)

If u=e^(ax)sin bx and v=e^(ax)cos bx, then what is

y=e^(ax)sin bx : Find y_1 .

int (e ^ (ax) + sin bx) dx

d/(dx)[e^(ax)/(sin(bx+c))]=