Home
Class 11
MATHS
Let a(1),a(2),.......,a(n) be fixed real...

Let `a_(1),a_(2),.......,a_(n)` be fixed real numbers and define a function `f(x)=(x-a_(1))(x-a_(2)) ......(x-a_(n))`, what is lim `f(x)`? For some `anea_(1),a_(2),.........a_(n)`, compute `lim_(Xrarr1) ` f(x)

Promotional Banner

Similar Questions

Explore conceptually related problems

Let a_(1), a_(2),…,a_(n) be fixed real numbers and define a function f(x)=(x-a_(1))(x-a_(2))…(x-a_(n)). What is lim_(xrarra_(1))f(x) ? For some a ne a_(1), a_(2), …..,a_(n) , compute lim_(xrarra)(f(x) .

Let a_(1), a_(2),…,a_(n) be fixed real numbers and define a function f(x)=(x-a_(1))(x-a_(2))…(x-a_(n)). What is lim_(xrarra_(1))f(x) ? For some a ne a_(1), a_(2), …..,a_(n) , compute lim_(xrarra)(f(x) .

Let a_(1), a_(2),…,a_(n) be fixed real numbers and define a function f(x)=(x-a_(1))(x-a_(2))…(x-a_(n)). What is lim_(xrarra_(1))f(x) ? For some a ne a_(1), a_(2), …..,a_(n) , compute lim_(xrarra)f(x) .

Let a_(1), a_(2),…,a_(n) be fixed real numbers and define a function f(x)=(x-a_(1))(x-a_(2))…(x-a_(n)). What is lim_(xrarra_(1))f(x) ? For some a ne a_(1), a_(2), …..,a_(n) , compute lim_(xrarra)(f(x) .

Let a_(1), a_(2),…,a_(n) be fixed real numbers and define a function f(x)=(x-a_(1))(x-a_(2))…(x-a_(n)). What is lim_(xrarra_(1))f(x) ? For some a ne a_(1), a_(2), …..,a_(n) , compute lim_(xrarra)(f(x) .

Let a_(1), a_(2), …………….,a_(n) be fixed real numbers and define a function f(x) = (x-a_(1))(x-a_(2))…….(x-a_(n)) . What is lim_(x rarr a_(1)) f(x)? For some a ne a_(1), a_(2),……a_(n) compute lim_(x rarr a) f(x)

Let a_(1),a_(2),...,a_(n) be fixed real numbers and let f(x)=(x-a_(1))(x-a_(2))(x-a_(3))...(x-a_(n)). Find lim_(xtoa_(1))f (x). If anea_(1),a_(2),..,a_(n),Compute lim_(xtoa) f(x).

If a_(1), a_(2),…….a_(n) are real numbers and the function f(x)=(x-a_(1))^(2)+(x-a_(2))^(2)+…..+(x-a_(n))^(2) attains its minimum value for some x = p, then p is

Prove that function y=(x-a_(1))^(2)+(x-a_(2))^(2)+...+(x-a_(n))^(2) is minimum when x=(1)/(n)(a_(1)+a_(2)+...+a_(n)) .

let f(x)=a_(0)+a_(1)x^(2)+a_(2)x^(4)+.........a_(n)x^(2n) where 0