Home
Class 12
MATHS
x=e^t (sin t + cos t ),y=e^t(sin t -cos ...

`x=e^t (sin t + cos t ),y=e^t(sin t -cos t)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find dy/dx at t = pi/4 when x e^(-t) (sin t + cos t ) and y = e^-t (sin t - cost)

If x=ae^(t)(sin t+cos t) and y=ae^(t)(sin t-cos t),quad prove that (dy)/(dx)=(x+y)/(x-y)

x = sin t, y = cos 2 t .

x=a cos t, y=b sin t

x = a (cos t + sin t), y = a (sin t-cos t)

x=sin t, y= cos 2t.

If x = a (cos t + t sin t), y = a (sin t - t cos t), then at t = pi//4,(dy)/(dx)

Find (dy)/(dx) if x =a ( cos t + t sin t ), y = a ( sin t - t cos t).