Home
Class 12
MATHS
निम्नलिखित अवकल समीकरण की कोटि और घाट बत...

निम्नलिखित अवकल समीकरण की कोटि और घाट बताइए-
`(d^(3)y)/(dx^(3))=sqrt(x+((dy)/(dx))^(2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

(y-x(dy)/(dx))=3(1-x^(2)(dy)/(dx))

(x^(2)d^(2)y)/(dx^(2))=(x(dy)/(dx)-y)^(3) Find Degree.

Find degree and order x(d^(2)y)/(dx^(2))+((dy)/(dx))^(5)-y(dy)/(dx)=3

If y=(sqrt(x^(2)-3)) , then (dy)/(dx)=

Find the order and degree of the differential equation. (d^(3)y)/(dx^(3))=sqrt(x+((dy)/(dx))^(3))

Find the order and degree of ((d^(3)y)/(dx^(3)))^(2)-3((dy)/(dx))^(2)-e^(x)=4 .

The order and degree of the differential equation , (d^(3)y)/(dx^(3))+sqrt(((dy)/(dx))^(3)+y^(2))=0

What is the degree of x((d^(2)y)/(dx^(2)))^(3)+y((dy)/(dx))^(4)+x^(3)=0 ?

Order and degree of the differential equation (d^(3)y)/(dx^(3))=5sqrt(1-((dy)/(dx))^(2)) respectively are

The degree and order of the D.E ((d^(3)y)/(dx^(3)))^(2)-((dy)/(dx))^(5)=x^(4) is