Home
Class 12
MATHS
Find the value of x where tan^-1 3 + cot...

Find the value of `x` where `tan^-1 3 + cot^-1 x = pi/2`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of x if tan^(-1)x + 2 cot^(-1)x = (2 pi)/3 is

solve the equation for the value of x : cot^(-1)(x) + tan^(-1)3 = pi/2

Find the value of tan (pi/4+2cot^(-1) sqrt3)

solve the equation cot^-1 x + tan^-1 3 = pi/2

solve the equation cot^-1 x + tan^-1 3 = pi/2

If 3 tan^-1 x + cot^-1 x = pi , then x equals

Evaluate cot (tan^(-1) (2x) + cot^(-1) (2x))

If tan^(-1)x-cot^(-1)x=tan^(-1)(1/sqrt3) , x > 0 find the value of x and hence find the value of sec^(-1)(2/x)

Find x, if tan^(-1)4+cot^(-1)x=(pi)/(2) .