Home
Class 12
MATHS
If none of A,B, A+B is an integral multi...

If none of A,B, A+B is an integral multiple of `pi`, then prove that `(1- cos A+ cos B- cos (A+B))/(1+ cos A- cos B - cos (A+B))=tan.(A)/(2) cot. (B)/(2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : cos (A + B) cos (A - B) = cos^2A-1+ cos^2B .

(cos A+cos B)/(cos B-cos A)=cot((A+B)/(2))cot((A-B)/(2))

In Delta ABC, show that (1-cos A+cos B+cos C)/(1-cos C+cos A+cos B)=tan((A)/(2))cot((C)/(2))

Prove that : sin^2 A=cos^2 (A-B)+ cos^2 B-2 cos (A - B) cos A cos B .

If A + B + C =pi , prove that : cos 2A + cos 2B + cos 2C = -1-4 cos A cos B cos C .

Prove that cos (A + B) cos (A - B) = cos^(2) B - sin^(2) A

If A+B+C=pi prove that cos^(2) A+cos^(2) B+cos^(2) C=1 - 2cos A cos B cos C .

If A+B+C=0 , then prove that cos ^(2)A+ cos ^(2) B + cos ^(2) C =1+2 cos A cos B cos C

If A + B + C =pi , prove that : cos A + cos B - cos C> 1 .

Prove that: (cos A+cos B)/(cos B-cos A)=cot((A+B)/(2))cot((A-B)/(2))