Home
Class 12
MATHS
If f: Rvec(-1,1) is defined by f(x)=-(x|...

If `f: Rvec(-1,1)` is defined by `f(x)=-(x|x|)/(1+x^2),t h e nf^(-1)(x)` equals `sqrt((|x|)/(1-|x|))` (b) `-sgn(x)sqrt((|x|)/(1-|x|))` `-sqrt(x/(1-x))` (d) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

If f:R rarr(-1,1) is defined by f(x)=-(x|x|)/(1+x^(2)), then f^(-1)(x) equals sqrt((|x|)/(1-|x|)(b)-sgn(x)sqrt((|x|)/(1-|x|))-sqrt((x)/(1-x))(d)) none of these

If the function f:(1,oo) vec (1,oo) is defined by f(x)=2^(x(x-1)),t h e nf^(-1)(x) is (1/2)^(x(x-1)) (b) 1/2(1+sqrt(1+4(log)_2x)) 1/2(1-sqrt(1+(log)_2x) (d) not defined

If F:[1,oo)vec 2,oo is given by f(x)=x+(1)/(x), then f^(-1)(x) equals.(x+sqrt(x^(2)-4))/(2)(b)(x)/(1+x^(2))(c)(x-sqrt(x^(2)-4))/(2)(d)1+sqrt(x^(2)-4)

If F :[1,oo)vec[2,oo) is given by f(x)=x+1/x ,t h e nf^(-1)(x) equals. (a) (x+sqrt(x^2-4))/2 (b) x/(1+x^2) (c) (x-sqrt(x^2-4))/2 (d) 1+sqrt(x^2-4)

If the function f:(1,oo)rarr(1,oo) is defined by f(x)=2^(x(x-1)),t h e nf^(-1)(x) is (a) (1/2)^(x(x-1)) (b) 1/2(1+sqrt(1+4(log)_2x)) 1/2(1-sqrt(1+(log)_2x) (d) not defined

If the function f:(1,oo)rarr(1,oo) is defined by f(x)=2^(x(x-1)),t h e nf^(-1)(x) is (1/2)^(x(x-1)) (b) 1/2(1+sqrt(1+4(log)_2x)) 1/2(1-sqrt(1+(log)_2x) (d) not defined

If the function f:[1,oo)rarr[1,oo) is defined by f(x)=2^(x(x-1)),t h e nf^(-1)(x) is (1/2)^(x(x-1)) (b) 1/2(1+sqrt(1+4(log)_2x)) 1/2(1-sqrt(1+(log)_2x) (d) not defined

If the function f:(1,oo)rarr(1,oo) is defined by f(x)=2^(x(x-1)),t h e nf^(-1)(x) is (1/2)^(x(x-1)) (b) 1/2(1+sqrt(1+4(log)_2x)) 1/2(1-sqrt(1+(log)_2x) (d) not defined

If the function f:(1,oo)rarr(1,oo) is defined by f(x)=2^(x(x-1)),t h e nf^(-1)(x) is (a) (1/2)^(x(x-1)) (b) 1/2(1+sqrt(1+4(log)_2x)) 1/2(1-sqrt(1+(log)_2x) (d) not defined

If F :[1,oo)vec[2,oo) is given by f(x)=x+1/x ,t h e nf^(-1)(x) equals. (x+sqrt(x^2-4))/2 (b) x/(1+x^2) (c) (x-sqrt(x^2-4))/2 (d) 1+sqrt(x^2-4)