Home
Class 12
MATHS
IF y=(x+sqrt(1+x^2))^n, Prove that, (1+x...

IF `y=(x+sqrt(1+x^2))^n`, Prove that, `(1+x^2)y_2+xy_1=n^2y`. Hence, find the value of `(y_2)_0`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If y = (x+ sqrt(1+x^2))^n then prove that (1+x^2)y_2+xy_1 = n^2y .

If y=sin^(-1)x/sqrt(1-x^2) prove that (1-x^2)y_2-3xy_1-y=0

If y=sin^(-1)x/sqrt(1-x^2) prove that (1-x^2)y_1-xy=1

If y = tan^(-1) x, prove that (1 + x^2)y_2 + 2xy_1 = 0

IF y=cos (m sin^-1 x), prove that , (1-x^2)y_2-xy_1+m^2y=0 .

y = e^(m sin^(-1)x), prove that (1 - x^2) y_2 - xy_1 = m^2y

If y=log(x+sqrt(x^2+a^2)) , show that (a^2+x^2)y_2+xy_1=0

If y=(sin^(-1)x)^2 , then prove that (1-x^2)y_2-xy_1=2

If y=(sin^(-1)x)^2 , prove that (1-x^2)y_2-x y_1-2=0 .