Home
Class 12
MATHS
In triangle ABC, prove that sin(A/2)+sin...

In `triangle ABC`, prove that `sin(A/2)+sin(B/2)+sin(C/2)le(3)/(2)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

In a triangle ABC, prove that :a sin((A)/(2)+B)=(b+c)sin((A)/(2))

In triangle ABC , prove that b^2sin2C+c^2sin2B=2bcsinA .

In triangle ABC , prove that (sin(A-B))/(sin(A+B))=(a^2-b^2)/(c^2) .

In any triangle ABC, prove that : a sin (A/2+B)= (b +c) sin frac (A)(2) .

In any triangle ABC prove that sin2A+sin2B+sin2C=(abc)/(2R^3)

In any triangle ABC, prove that: (a^(2)sin(B-C))/(sin B+sin C)+(b^(2)sin(C-A))/(sin C+sin A)+(c^(2)sin(A-B))/(sin A+sin B)=0

For any triangle ABC, prove that sin(B-C)/sin(B+C)=(b^2-c^2)/(a^2)

In a triangle ABC, prove that (a^2sin(B-C))/sinA+(b^2sin(C-A))/sinB+(c^2sin(A-B))/sinC=0

In any triangle ABC, prove that following: a(sin A)/(2)sin((B-C)/(2))+b(sin B)/(2)sin((C-A)/(2))+sin((A-B)/(2))=0