Home
Class 12
MATHS
If underset(xrarr0)"lim"(1+x)^(1//x)=e ...

If `underset(xrarr0)"lim"(1+x)^(1//x)=e` , show that
`underset(xrarr1)"lim"x^((1)/(1-x))=e^(-1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If underset(xrarr0)"lim"(1+x)^(1//x)=e , show that underset(xrarr0)"lim"(1+2x)^(1//x)=e^(2)

If underset(xrarr0)"lim"(1+x)^(1//x)=e , show that underset(xrarr0)"lim"(1+4x)^(1//x)=e^4

If underset(xrarr0)"lim"(1+x)^(1//x)=e , show that underset(xrarr0)"lim"(1+3x)^(3//x)=e^(9)

underset(xrarr0)"lim"(e^(3x)-1)/(x) =

Show that underset(xrarr1)"lim"(1)/(x-1)^(2)=+oo .

underset(xrarr0)"lim"(a^(2x)-1)/(x) =

Evaluate : underset(xrarr0)"lim"(1)/(x) .

underset(xrarr0)"lim"(log(1+4x))/(x) =

underset(xrarr 0)"lim"(sin^(-1)x)/(x) =

underset(xrarr1)"lim"(x-1)/(sqrt(x)-1)= ?