Home
Class 12
MATHS
If in a triangle ABC, 2cosA=sinBcosecC, ...

If in a triangle ABC, `2cosA=sinBcosecC`, then

Promotional Banner

Similar Questions

Explore conceptually related problems

If in triangle ABC, cosA=(sinB)/(2sinC) , then the triangle is

If in triangle ABC, cosA=(sinB)/(2sinC) , then the triangle is

If in a triangle ABC , cosA=(sinB)/(2sinC) then the triangle ABC , is

In any triangle ABC if cosA=sinB-cosC then show that any angle of the triangle is a right angle.

In a triangle ABC cosA+cosB+cosC<=k then k=

In a triangle ABC cosA+cosB+cosC<=k then k=

If in triangle ABC cosA+cosB+cosC=3/2 then prove that triangle is equilateral

In a triangle ABc, cosA+ cosB+cosC leP then P=

If in a triangle ABC, (cosA)/a=(cosB)/b=(cosC)/c ,then the triangle is

If in a triangle ABC, (cosA)/a=(cosB)/b=(cosC)/c ,then the triangle is