Home
Class 12
MATHS
In each of the following cases find (dy)...

In each of the following cases find `(dy)/(dx)` using the rule `(dy)/(dx)=(dy)/(du)*(du)/(dx)`:
`y=log(ax+b)^(3)` assuming `ax+b=u`.

Promotional Banner

Similar Questions

Explore conceptually related problems

In each of the following cases find (dy)/(dx) using the rule (dy)/(dx)=(dy)/(du)*(du)/(dx): y=m^(ax^(2)+bx+c) assuming ax^(2)+bx+c=u .

In each of the following cases find (dy)/(dx) using the rule (dy)/(dx)=(dy)/(du)*(du)/(dx): y="cosec"^(3)x assuming "cosec"x=u .

In each of the following cases find (dy)/(dx) using the rule (dy)/(dx)=(dy)/(du)*(du)/(dx): y=sqrt(tan^(-1)x) assuming tan^(-1)x=u .

Find (dy)/(dx) using the rule (dy)/(dx)=(dy)/(du)*(du)/(dv)*(dv)/(dx): y=log_(2)(sin x^(3))

Find (dy)/(dx) using the rule (dy)/(dx)=(dy)/(du)*(du)/(dv)*(dv)/(dx): y=e^(sqrt(cos x))

Find (dy)/(dx) using the rule (dy)/(dx)=(dy)/(du)*(du)/(dv)*(dv)/(dx): y=cos^(-1) sqrt(2x-3)

Find (dy)/(dx) using the rule (dy)/(dx)=(dy)/(du)*(du)/(dv)*(dv)/(dx): y=(1)/(sqrt(log sec x))

Find (dy)/(dx) using the rule (dy)/(dx)=(dy)/(du)*(du)/(dv)*(dv)/(dx): y= sin sqrt(x^(2)+a^(2))

Find dy/dx using the rule dy/dx=(dy)/(du)⋅(du)/(dv)⋅(dv)/(dx) : y=cos^(-1)sqrt(2x-3)

U=x^y find (dU)/dx