Home
Class 12
MATHS
" The value of the determinant "|[1,a,a^...

" The value of the determinant "|[1,a,a^(2)],[cos(n-1)x,cos nx,cos(n+1)x],[sin(n-1)x,sin nx,sin(n+1)x]|" is zero "(a!=1)" ,then "sin x" is equal to "

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the determinants |{:(1,a,a^(2)),(cos(n-1)x,cos nx , cos(n+1)x),(sin(n-1)x , sin nx , sin(n+1)x):}| is zero if

The value of the determinants |{:(1,a,a^(2)),(cos(n-1)x,cos nx , cos(n+1)x),(sin(n-1)x , sin nx , sin(n+1)x):}| is zero if

The value of the determinants |{:(1,a,a^(2)),(cos(n-1)x,cos nx , cos(n+1)x),(sin(n-1)x , sin nx , sin(n+1)x):}| is zero if

The value of the determinants |{:(1,a,a^(2)),(cos(n-1)x,cos nx , cos(n+1)x),(sin(n-1)x , sin nx , sin(n+1)x):}| is zero if

The value of the determinants |{:(1,a,a^(2)),(cos(n-1)x,cos nx , cos(n+1)x),(sin(n-1)x , sin nx , sin(n+1)x):}| is zero if

The value of the determinant : Delta=|(a^2,a,1),(cosnx,cos(n+1)x,cos(n+2)x),(sinnx,sin(n+1)x,sin(n+2)x)| is : in dependent is :

sin(n+1)x.cosnx-cos(n+1)x.sinnx= …………

The value of the determinant |a^(2)a1cos nx cos(n+1)x cos(n+2)x sin nx sin(n+1)x sin(n+2)x is independent of n(b)a(c)x(d) none of these