Home
Class 12
MATHS
If alpha, beta, gamma are the roots of t...

If `alpha, beta, gamma` are the roots of the equation `x^3 + px^2 + qx + r = 0` such that `alpha + beta= 0`then

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha, beta, gamma are roots of the equation x^(3) - px^(2) + qx - r = 0 , then sum alpha^(2) beta =

If alpha, beta, gamma are the roots of the equation x^3 + px^2 + qx + r = n then the value of (alpha - 1/(beta gamma)) (beta -1/(gamma alpha)) (gamma-1/(alpha beta)) is:

If alpha, beta, gamma are roots of the equation x^(3) + px^(2) + qx + r = 0 , then sum(alpha - beta )^(2) =

If alpha, beta, gamma are roots of the equation x^(3) + px^(2) + qx + r = 0 , then sum (1)/(alpha beta ) =

If alpha , beta , gamma are the roots of the equation x^3 +px^2 + qx +r=0 prove that ( alpha + beta ) ( beta + gamma) ( gamma + alpha ) =r-pq

If alpha , beta , gamma are the roots of the equation x^3 +px^2 + qx +r=0 prove that ( alpha + beta ) ( beta + gamma) ( gamma + alpha ) =r-pq

If alpha, beta, gamma are roots of the equation x^(3) + px^(2) + qx + r = 0 , then sum alpha^(2) beta^(2) =

If alpha , beta , gamma are the roots of the equation x^3 +px^2 +qx +r=0 then sum alpha^2 ( beta + gamma)=

If alpha , beta , gamma are the roots of the equation x^3 +px^2 +qx +r=0 then sum alpha^2 ( beta + gamma)=