Home
Class 11
MATHS
[" 10.If "vec u,vec v" and "vec w" are n...

[" 10.If "vec u,vec v" and "vec w" are non-coplanar vectors and "p,q" are real numbers,then the equality "[3vec upvec vpvec w]-],[[pvec vvec wqu]-[2vec wqvec vqu]=0" holds for "],[[" (A) exactly two values of "(p,q)," (B) more than two but not all values of "(p,q)],[" (C) all values of "(p,q)," (D) exactly one value of "(p,q)]]

Promotional Banner

Similar Questions

Explore conceptually related problems

If vec u , vec nu , and vec w are non coplanar vectors and p,q are real numbers, then the equality [3 vec u p vec nu p vec w]-[p vec nu vec w q vec u]-[2 vec w q vec nu q vec u] = 0 holds for

If vec u , vec v , vec w are noncoplanar vectors and p, q are real numbers, then the equality [3 vec u ,""p vec v , p vec w]-[p vec v ,"" vec w , q vec u]-[2 vec w ,""q vec v , q vec u]=0 holds for (A) exactly one value of (p, q) (B) exactly two values of (p, q) (C) more than two but not all values of (p, q) (D) all values of (p, q)

If vec u , vec v , vec w are noncoplanar vectors and p, q are real numbers, then the equality [3 vec u ,""p vec v , p vec w]-[p vec v ,"" vec w , q vec u]-[2 vec w ,""q vec v , q vec u]=0 holds for (A) exactly one value of (p, q) (B) exactly two values of (p, q) (C) more than two but not all values of (p, q) (D) all values of (p, q)

vec(u),vec(v) and vec(w) are not co-planar vectors and p and q are real numbers. If [3vec(u),p vec(v),p vec(w)]-[p vec(v),vec(w),q vec(u)]-[2vec(w),q vec(v),q vec(u)]=0 then ……………

If vec u,vec v and vec w are three non-copolanar vectors,then prove that (vec u+vec v-vec w)*(vec u-vec v)xx(vec v-vec w)=vec u*vec v*xxvec w

If vec a,vec b,vec c are non-coplanar vectors and lambda is a real number then then vectors vec a+2vec b+3vec c,lambdavec b+4vec c and (2 lambda-1)vec c are non-coplanar for

If vec u , vec v and vec w are three non-coplanar vectors, then prove that ( vec u+ vec v- vec w) . [ [( vec u- vec v)xx( vec v- vec w)]]= vec u . vec v xx vec w

If vec u , vec v and vec w are three non-coplanar vectors, then prove that ( vec u+ vec v- vec w) . [ [( vec u- vec v)xx( vec v- vec w)]]= vec u . (vec v xx vec w)