Home
Class 12
MATHS
If alpha, beta are solutions of a cos x ...

If `alpha, beta` are solutions of `a cos x + b sin x = c` then `sin alpha + sin beta =`

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha, beta are solutions of a cos x + b sin x = c then cos alpha + cos beta=

If alpha, beta are solutions of a cos theta + b sin theta = c where a, b, c in R and a^(2) + b^(2) gt 0, cos alpha ne cos beta, sin alpha ne sin beta then prove that sin alpha sin beta = (c^(2)-a^(2))/(a^(2) + b^(2))

If alpha, beta are solutions of a cos theta + b sin theta = c where a, b, c in R and a^(2) + b^(2) gt 0, cos alpha ne cos beta, sin alpha ne sin beta then prove that sin alpha + sin beta = (2bc)/(a^(2) + b^(2))

If alpha,beta are roots of a cos theta+b sin theta=c then value of sin alpha+sin beta&sin alpha sin beta is

alpha & beta are solutions of a cos theta+b sin theta=c(cosalpha != cos beta)&(sin alpha != sin beta) Then tan((alpha+beta)/2)=?

alpha& beta are solutions of a cos theta+b sin theta=c(cos alpha!=cos beta)&(sin alpha!=sin beta) Then tan((alpha+beta)/(2))=?

If alpha , beta are complementary angles , sin alpha = 3//5 , then sin alpha cos beta - cos alpha sin beta =