Home
Class 12
MATHS
Show that the equation of the circle des...

Show that the equation of the circle described on the chord `x cos alpha + y sin alpha = p` of the circle `x^(2) + y^(2) = a^(2)` as diameter is `x^(2) + y^(2) - a^(2) - 2p (x cos alpha + y sin alpha - p) = 0`

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that the circle on the chord x cos alpha+y sin alpha-p=0 of the circle x^(2)+y^(2)=a^(2) as diameter is x^(2)+y^(2)-a^(2)-2p(x cos alpha+y sin alpha-p)=0

The circle on the chord x cos alpha + y sin alpha -p= 0 of the circle x^2 + y^2 - 2 = 0 as diameter is:

The circle on the chord xcos alpha + ysin alpha =p of the circle x^2+y^2=r^2 as diameter is

If line x cos alpha + y sin alpha = p " touches circle " x^(2) + y^(2) =2ax then p =

The line x sin alpha - y cos alpha =a touches the circle x ^(2) +y ^(2) =a ^(2), then,

The gradient of the tangent line at the point (a cos alpha,a sin alpha) to the circle x^(2)+y^(2)=a^(2)

If the straight line y= x sin alpha + a sec alpha is a tangent to the circle x^(2) + y^(2) = a^(2) then-

If the line y cos alpha=x sin alpha+a cos alpha be a tangtnt to the circle x^(2)+y^(2)=a^(2) then