Home
Class 12
MATHS
Let Phin =2^(2^n) +1. Prove that if n lt...

Let `Phi_n =2^(2^n) +1`. Prove that if `n lt m`, then `Phi_n` divides `Phi_m - 2`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that for a null set phi, n{P(P(phi))}=2 .

If phi is an empty set, then n(phi)= ________.

Prove that sin^(2)phi(1+cot^(2)phi)=1

Are phi and {phi} same? n{phi} ?

IF phi(n+1)=(2 phi(n)+1)/(2), for all n in N and phi(1)=2 then phi(2007) is

If t a n^2theta=2tan^2phi+1 , prove that cos2theta+sin^2phi=0.

Let n ( gt 1 ) be a positive integer, the largest integer m such that ( n ^(m) + 1) divides : ( 1+ n + n^(2) + "………" n^(127)) is :

If A={phi} , then n(A)= _______.