Home
Class 12
MATHS
The value of int(a)^(b)(x-a)^(3)(b-x)^(4...

The value of `int_(a)^(b)(x-a)^(3)(b-x)^(4)dx` is `((b-a)^(m))/(n).` Then `(m, n)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_a^b(x-a)^3(b-x)^4dx is

The value of int_a^b(x-a)^3(b-x)^4dx is

The value of int_(a)^(b)(|x|)/(x)dx,a

If m,n in N, then the value of int_(a)^(b)(x-a)^(m)(b-x)^(n)dx is equal to

The value of int_(a)^(b)(x^(n-1)((n-2)x^(2)+(n-1)(a+b)x+nab))/((x+a)^(2)(x+b)^(2))dx is equal to :

If int_(a)^(b) (x^(n))/(x^(n)+(16-x)^(n))dx=6 , then

If int_(a)^(b) (x^(n))/(x^(n)+(16-x)^(n))dx=6 , then

If m,n in N, then the value of int_a^b(x-a)^m(b-x)^n dx is equal to

If m,n in N, then the value of int_a^b(x-a)^m(b-x)^n dx is equal to