Home
Class 12
MATHS
int(1)^(2)((x^(2)-1)dx)/(x^(3).sqrt(2x^(...

`int_(1)^(2)((x^(2)-1)dx)/(x^(3).sqrt(2x^(4)-2x^(2)+1))=(u)/(v)` where u and v are in their lowest form. Find the value of `((1000)u)/(v)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(1)^(2)((x^(2)-1)dx)/(x^(3)*sqrt(2x^(4)-2x^(2)+1))=(u)/(v) where u are ( in their blowest form.Find the value of )/(sqrt(2x^(4)-2x^(2)+1))=(u)/(v) where of ((1000)u)/(v)

If x^(2)+y^(2)=4 and u^(2)+v^(2)=9 where x,y,u and v are real numbers then find the maximum value of (xu-yv)

If u=sin^(-1)((2x)/(1+x^(2))) and v=tan^(-1)((2x)/(1-x^(2))), where '-1

If u=sin^(-1)((2x)/(1+x^2)) and v=tan^(-1)((2x)/(1-x^2)) , where -1

If f(x)=log{(u(x))/(v(x))},u(1)=v(1) and u'(1)=v'(1)=2, then find the value of f'(1) .

If y=(u)/(v) , where u and v are functions of x, show that v^(3)(d^(2)y)/(dx^(2))=|{:(u,v,0),(u',v',v),(u'',v'',2v'):}| .

If y=(u)/(v) , where u and v are functions of x, show that v^(3)(d^(2)y)/(dx^(2))=|{:(u,v,0),(u',v',v),(u'',v'',2v'):}| .

If y=(u)/(v) , where u and v are functions of x, show that v^(3)(d^(2)y)/(dx^(2))=|{:(u,v,0),(u',v,v),(u'',v'',2v'):}| .

Let u=int_(0)^(oo)(dx)/(x^(4)+7x^(2)+1) and v=int_(0)^(x)(x^(2)dx)/(x^(4)+7x^(2)+1) then

Find (dy)/(dx) when y=u^(3) and u=sqrt(6x^(2)-2x+1)