Home
Class 10
MATHS
Prove that 1+2+3+.....+=(2n+1))=n^(2)...

Prove that `1+2+3+.....+=(2n+1))=n^(2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that 1+2+3+.....n=(n(n+1))/(2)

Prove that: 1+2+3+....+ n<((2n+1)^2)/8 for all ""n in Ndot

Prove that :1+2+3+...+n=(n(n+1))/(2)

Prove that 1*2+2*3+3*4+.....+n*(n+1)=(n(n+1)(n+2))/(3)

Using the principle of mathematical induction, prove that : 1. 2. 3+2. 3. 4++n(n+1)(n+2)=(n(n+1)(n+2)(n+3))/4^ for all n in N .

Using the principle of mathematical induction, prove that : 1. 2. 3+2. 3. 4++n(n+1)(n+2)=(n(n+1)(n+2)(n+3))/4^ for all n in N .

Prove that : 1+2+3++n=(n(n+1))/2

Using mathematical induction prove that 1^2+3^2+5^2+.....+(2n-1)^2=(n(2n-1)(2n+1))/3 for all n in N

Prove that: 1+2+3+n<((2n+1)^(2))/(8) for all n in N.

For all nge1 , prove that 1.2.3+2.3.4+......+n(n+1)(n+2)=(n(n+1)(n+2)(n+3))/4