Home
Class 11
MATHS
" If for a matrix "A,A=A^(-1)," then sho...

" If for a matrix "A,A=A^(-1)," then show that "A(A^(3)+1)=A+1" (I being the unit matrix)."

Promotional Banner

Similar Questions

Explore conceptually related problems

If for a matrix A, A= A^(-1) , then show that A(A^(3)+I)=A+I (I is the unit matrix).

If for a matrix A , A^5=I , then A^-1=

If for matrix A, A^(3)=I then A^(-1)=

If for the matrix A, A^(3)=I , then A^(-1)=

If for the matrix A, A^(5)=I , then A^(-1)=

For the matrix A, if A^(3)=I , then find A^(-1) .

If A=[(3,1,-1),(0,1,2)] , then show that A A' is a symmetric matrix.

If A = [(2,2),(4,3)] show that, A A^(-1) =I_(2) wher I_(2) is the unit matrix of order 2.

If A = [[2,2],[4,3]] show that A A^(-1) = I_2 where I_2 is the unit matrix of order 2.

If A= ((2,3),(-1,2)) .Show that A^(2)-4A+7I=0 whwre I is the unit matrix of order 2.