Home
Class 12
MATHS
" (ii) "[y=x^(2)+2x+C:y'-2x-2=0]...

" (ii) "[y=x^(2)+2x+C:y'-2x-2=0]

Promotional Banner

Similar Questions

Explore conceptually related problems

Verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation: ( 2)y=x^(2)+2x+C:y'-2x-2=0(3)y=cos x+c:y'+sin x=0

Verify that the given functions ( explicit or implicit ) is a solution of the corresponding differential equation : y=x^(2)+2x+C:y'-2x-2=0

verify that the given functions(explicit or implicit) is a solution of the corresponding differential equation : y = x^(2) + 2x + C : y' - 2x - 2 = 0

Verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation: (1)y = e^x +1: y"-y=0(2) y=x^2+2x+C : yprime-2x-2=0 (3) y=cos x+c : y'+sinx=0

Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation: y = x^2 + 2x + C : y' - 2x - 2 = 0

Verify that the given function (explicit or implicit) isa solution of the correseponding differential equation : y = x^2 + 2x +c :y' - 2x - 2 = 0

If line 3x - y + c = 0 touches circle x^(2) + y^(2) - 2x + 8y - 23 =0 , then c =

If the lines 2x+3y+1=0 and 3x-y-4=0 lie along diameters of a circle of circumference 10 pi ,then the equation of the circle is (A) x^(2)+y^(2)-2x+2y-23=0 (B) x^(2)+y^(2)+2x-2y-23=0 (C) x^(2)+y^(2)+2x+2y-23=0 (D) x^(2)+y^(2)-2x-2y-23=0

The locus of the mid-point of a chord of the circle x^2 + y^2 -2x - 2y - 23=0 , of length 8 units is : (A) x^2 + y^2 - x - y + 1 =0 (B) x^2 + y^2 - 2x - 2y - 7 = 0 (C) x^2 + y^2 - 2x - 2y + 1 = 0 (D) x^2 + y^2 + 2x + 2y + 5 = 0

The locus of the mid-point of a chord of the circle x^2 + y^2 -2x - 2y - 23=0 , of length 8 units is : (A) x^2 + y^2 - x - y + 1 =0 (B) x^2 + y^2 - 2x - 2y - 7 = 0 (C) x^2 + y^2 - 2x - 2y + 1 = 0 (D) x^2 + y^2 + 2x + 2y + 5 = 0