Home
Class 12
MATHS
" If "int(log2)^(x)(dx)/(sqrt(e^(x)-1))=...

" If "int_(log2)^(x)(dx)/(sqrt(e^(x)-1))=(pi)/(6)" then find "x

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(log2)^(t)(dx)/(sqrt(e^(x)-1))=(pi)/(6) , then t=

If int_(log2)^(x)(dx)/(sqrt(e^(x)-1))=(pi)/(6), then x is equalto 4 (b) ln8(c)ln4(d) none of these

If int_(log2)^(x) (1)/(sqrt(e^(x)-1))dx=(pi)/(6) then x is equal to

If : int_(ln 2)^(x)(1)/(sqrt(e^(t)-1))dt=(pi)/(6) , then : x =

If int_(log2)^(a)(e^(x))/(sqrt(e^(x)-1))dx=2 then a=

If int_(log2)^(a)(e^(x))/(sqrt(e^(x)-1))dx=2 then a=

If int(log 2)^(x) (dy)/(sqrt(e^(y) -1)) = (pi)/(6) , prove that x = log 4

if int_(log2)^(x) (du)/(e^u-1)^(1/2) =pi/6 then e^x=

if int_(log2)^(x) (du)/(e^u-1)^(1/2) =pi/6 then e^x=