Home
Class 12
MATHS
[" If "(log x)/(2a+3b-5c)=(log y)/(2b+3c...

[" If "(log x)/(2a+3b-5c)=(log y)/(2b+3c-5a)=(log z)/(2c+3a-5b)" ,then value of "xyz" is "],[[" (1) "0," (2) "2," (3) "1,(4)-1]]

Promotional Banner

Similar Questions

Explore conceptually related problems

If (logx)/(2a+3b-5c)=(log y)/(2b+3c-5a)=(log z)/(2c=3a-5b') then xyz=

If log x/(b-c) =logy/(c-a) = logz/((a-b) then the value of xyz is

If (log x)/(b-c) = (log y)/(c-a) = (log z)/(a-b) , then prove that x^(b+c).y^(c+a).z^(a+b) = 1

If (log a)/(y-z)=(log b)/(z-x)=(log c)/(x-y) the value of a^(y+z)*b^(z+x)*c^(x+y) is

underset equal to b-c=(log y)/(c-a)=(log z)/(a-b) then x^(a)y^(b)z^(c) is

If ("log"_(e)x)/(b - c) = ("log"_(e) y)/(c - a) = ("log"_(e) z)/(a - b) , show that xyz = 1

If (log x)/(b-c) = (log y)/(c-a) = (log z)/(a-b) , then prove that x^(b^2+bc+c^2).y^(c^2+ca+a^2).z^(a^2+ab+b^2)=1

If (log x)/(b-c)=(log y)/(c-a)=(log z)/(a-b), then which of the following is/are true? zyz=1 (b) x^(a)y^(b)z^(c)=1x^(b+c)y^(c+b)=1( d) xyz=x^(a)y^(b)z^(c)

If log_(a)b=1/2,log_(b)c=1/3" and "log_(c)a=(K)/(5) , then the value of K is

If ("log"a)/(3) = ("log"b)/(4) = ("log"c)/(5) , then ca equals