Home
Class 12
MATHS
If S is the circumcentre, O is the ortho...

If S is the circumcentre, O is the orthocentre of `Delta` ABC then `vec(O)A + vec(O)B + vec(O)C =`

Promotional Banner

Similar Questions

Explore conceptually related problems

If S is the circumcentre, G the centroid, O the orthocentre of Delta ABC, then vec(S)A + vec(S)B + vec(S)C =

If O is the circumcentre and P the orthocentre of Delta ABC , prove that vec(OA)+ vec(OB) + vec(OC) =vec(OP) .

If S is circumcentre, O is orthocentre of DeltaABC , then vec(SA)+vec(SB)+vec(SC) =

If O is the circumcentre and P the orthocentre ( of Delta ABC, prove that )/(OA)+vec OB+vec OC=vec OP

If S is the circumcentre,O is the orthocentre of Delta ABC, then bar(SA)+( O is the orthocentre )/(SC) equals

If O( vec0 ) is the circumcentre and O' the orthocentre of a triangle ABC, then prove that i. vec(OA)+vec(OB)+vec(OC)=vec(OO') ii. vec(O'A)+vec(O'B)+vec(O'C)=2vec(O'O) iii. vec(AO')+vec(O'B)+vec(O'C)=2 vec(AO)=vec(AP) where AP is the diameter through A of the circumcircle.

If S is the cirucmcentre, G the centroid, O the orthocentre of a triangle ABC, then vec(SA) + vec(SB) + vec(SC) is:

If S is the cirucmcentre, G the centroid, O the orthocentre of a triangle ABC, then vec(SA) + vec(SB) + vec(SC) is:

If O is the circumcentre, G is the centroid and O' is orthocentre or triangle ABC then prove that: vec(OA) +vec(OB)+vec(OC)=vec(OO')