Home
Class 11
MATHS
If alphaa n dbeta are roots of the equa...

If `alphaa n dbeta` are roots of the equation `a x^2+b x+c=0,` then the roots of the equation `a(2x+1)^2-b(2x+1)(x-3)+c(x-3)^2=0` are `(2alpha+1)/(alpha-3),(2beta+1)/(beta-3)` b. `(3alpha+1)/(alpha-2),(3beta+1)/(beta-2)` c. `(2alpha-1)/(alpha-2),(2beta+1)/(beta-2)` d. none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

If alphaa n dbeta are roots of the equation a x^2+b x+c=0, then the roots of the equation a(2x+1)^2-b(2x+1)(x-3)+c(x-3)^2=0 are a. (2alpha+1)/(alpha-3),(2beta+1)/(beta-3) b. (3alpha+1)/(alpha-2),(3beta+1)/(beta-2) c. (2alpha-1)/(alpha-2),(2beta+1)/(beta-2) d. none of these

If alphaa n dbeta are roots of the equation a x^2+b x+c=0, then the roots of the equation a(2x+1)^2-b(2x+1)(3-x)+c(3-x)^2=0 are (2alpha+1)/(alpha-3),(2beta+1)/(beta-3) b. (3alpha+1)/(alpha-2),(3beta+1)/(beta-2) c. (2alpha-1)/(alpha-2),(2beta+1)/(beta-2) d. none of these

If alpha and beta are roots of the equation a x^2+b x+c=0, then the roots of the equation a(2x+1)^2+b(2x+1)(x-3)+c(x-3)^2=0 are a. (2alpha+1)/(alpha-3),(2beta+1)/(beta-3) b. (3alpha+1)/(alpha-2),(3beta+1)/(beta-2) c. (2alpha-1)/(alpha-2),(2beta+1)/(beta-2) d. none of these

If alpha and beta are roots of the equation a x^2+b x+c=0, then the roots of the equation a(2x+1)^2-b(2x+1)(x-3)+c(x-3)^2=0 are a. (2alpha+1)/(alpha-3),(2beta+1)/(beta-3) b. (3alpha+1)/(alpha-2),(3beta+1)/(beta-2) c. (2alpha-1)/(alpha-2),(2beta+1)/(beta-2) d. none of these

If alpha and beta are roots of the equation ax^(2)+bx+c=0, then the roots of the equation -b(2x+1)(x-3)+c(x-3)^(2)=0a(2x+1)^(2)-b(2x+1)(x-3)+c(x-3)^(2)=0 are (2 alpha+1)/(alpha-3),(2 beta+1)/(beta-3) b.(3 alpha+1)/(alpha-2),(3 beta+1)/(beta-2)c(2 alpha-1)/(alpha-2),(2 beta+1)/(beta-2)d. none of these

If alpha,beta are the roots of the equation a x^2+b x+c=0, then find the roots of the equation a x^2-b x(x-1)+c(x-1)^2=0 in term of alpha and beta .

if alpha,beta be the roots of the equation ax^(2)+bx+c=0 then the roots of a(2x+1)^(2)+b(2x+1)(x-1)+c(x-1)^(2)=0 are (i) (2 alpha+1)/(alpha-1),(2 beta+1)/(beta-1) (ii) (2 alpha-1)/(alpha+1),(2 beta-1)/(beta+1) (iii) (alpha+1)/(alpha-2),(beta+1)/(beta-2)( iv) (2 alpha+3)/(alpha-1),(2 beta+3)/(beta-1)

If alpha&beta are the roots of the quadratic equation a x^2+b x+c=0 , then the quadratic equation, a x^2-b x(x-1)+c(x-1)^2=0 has roots: alpha/(1-alpha),beta/(1-beta) (b) alpha-1,beta-1 alpha/(alpha+1),beta/(beta+1) (d) (1-alpha)/alpha,(1-beta)/beta

If alpha and beta are roots of the equation 2x^(2)-3x-5=0 , then the value of (1)/(alpha)+(1)/(beta) is